Springer handbook of electrochemical engergy / Edited by Cornelia Breitkopf, Karen Swider-Lyons - Berlin : Springer, 2017. - xxvi, 1015 p. : ill. ; 29 cm.

Electrochemical Science: Historial Review.- Modern Electrochemistry.- Part A: Thermodynamics.- Thermodynamical Aspects of Electrochemical Reactions.- Thermodynamics of Electrochemical Systems.- Multiscale Modeling of Solvation.- Part B: Electrodes and Electrode Processes.- Highly Ordered Macroporous Electrodes.- Ion-Sensitive Electrodes.- Transport in Liquid-Phase Electrochemical Devices.- Catalyst Layer Modeling.- Water Management in Proton Exchange Fuell Cells.- Calculations in Li-Ion Battery Materials.- Part C: Electrochemistry Probes.- Electrochemical Energy Generation and Storage as Senn by In-Situ NMR.- Spectroscopy of Electrochemical Systems.- Kinetic Activity in Electrochemical Cells.- Part D: Energy Conversion and Storage.- Lithium-Ion Batteries and Materials.- Materials for Electrochemical Capacitors.- Electrochemical Capacitors.- Kinetics of Fast Redox Systems for Energy Storage.- Modern Fuel Cell Testing Laboratory.- Polymer Electrolyte Fuel Cells.- Next-Generation Electrocatalysts.- Methods in Biological Fuel Cells.- Energy Conversion Based on Bio(electro)catalysts.- Photoelectrochemical Conversion Processes.- Part E: Electrochemical Processes.- Advanced Extractive Electrometallurgy.- Electrodeposition of Nanomaterials.- Electrochemical Hydrogen Production.- Electrochemical Machining Fundamentals.

This comprehensive handbook covers all fundamentals of electrochemistry for contemporary applications. It provides a rich presentation of related topics of electrochemistry with a clear focus on energy technologies. It covers all aspects of electrochemistry starting with theoretical concepts and basic laws of thermodynamics, non-equilibrium thermodynamics and multiscale modeling. It further gathers the basic experimental methods such as potentiometry, reference electrodes, ion-sensitive electrodes, voltammetry and amperometry. The contents cover subjects related to mass transport, the electric double layer, ohmic losses and experimentation affecting electrochemical reactions. These aspects of electrochemistry are especially examined in view of specific energy technologies including batteries, polymer electrolyte and biological fuel cells, electrochemical capacitors, electrochemical hydrogen production and photoelectrochemistry.

9783662466568


Energy storage
Corrosion and coating
Electrochemical Science

620 SP RI