000 | 03133cam a2200385 a 4500 | ||
---|---|---|---|
008 | 131218s2014 fluab b 001 0 eng | ||
010 | _a 2013047353 | ||
020 | _a9781466586512 | ||
020 | _a1466586516 (hardback : acid-free paper) | ||
040 |
_aDLC _beng _cDLC _dDLC |
||
042 | _apcc | ||
050 | 0 | 0 |
_aG70.2 _b.B54 2014 |
082 | 0 | 0 |
_a910.285/57 _223 |
084 |
_aMAT000000 _aTEC036000 _aTEC041000 _2bisacsh |
||
245 | 0 | 0 |
_aBig data : _btechniques and technologies in geoinformatics / _cedited by Hassan A. Karimi |
260 |
_aBoca Raton : _bCRC Press, Taylor & Francis Group, _c2014. |
||
260 | _c©2014 | ||
300 |
_axiv, 298 p. : _bill., maps ; _c24 cm. |
||
504 | _aIncludes bibliographical references and index. | ||
520 |
_a"Preface What is big data? Due to increased interest in this phenomenon, many recent papers and reports have focused on defining and discussing this subject. A review of these publications would point to a consensus about how big data is perceived and explained. It is widely agreed that big data has three specific characteristics: volume, in terms of large-scale data storage and processing; variety, or the availability of data in different types and formats; and velocity, which refers to the fast rate of new data acquisition. These characteristics are widely referred to as the three Vs of big data, and while projects involving datasets that only feature one of these Vs are considered to be big, most datasets from such fields as science, engineering, and social media feature all three Vs. To better understand the recent spurt of interest in big data, I provide here a new and different perspective on it. I argue that the answer to the question of "What is big data?" depends on when the question is asked, what application is involved, and what computing resources are available. In other words, understanding what big data is requires an analysis of time, applications, and resources. In light of this, I categorize the time element into three groups: past (since the introduction of computing several decades ago), near-past (within the last few years), and present (now). One way of looking at the time element is that, in general, big data in the past meant dealing with gigabyte-sized datasets, in the near-past, terabyte-sized datasets, and in the present, petabyte-sized datasets. I also categorize the application element into three groups: scientific (data used for complex modeling, analysis, and simulation), business (data used for business analysis and modeling), and general"-- _cProvided by publisher. |
||
650 | 0 |
_aGeography _xData processing |
|
650 | 0 | _aBig data | |
650 | 0 | _aGeographic information systems | |
650 | 0 | _aGeospatial data | |
650 | 0 | _aHigh performance computing | |
650 | 7 |
_aMATHEMATICS / General _2bisacsh |
|
650 | 7 |
_aTECHNOLOGY & ENGINEERING / Remote Sensing & Geographic Information Systems _2bisacsh |
|
650 | 7 |
_aTECHNOLOGY & ENGINEERING / Telecommunications _2bisacsh |
|
700 | 1 |
_aKarimi, Hassan A. _eEdited by |
|
035 | _a(IMchF)fol15053888 | ||
005 | 20170126100640.0 | ||
001 | 59543 | ||
003 | UOWD | ||
942 | _cREGULAR | ||
999 |
_c25643 _d25643 |